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Abstract. The co-variability of cloud and precipitation in the extended tropics (35°N−35°S) is investigated using 

contemporaneous datasets for a 13-year period. The goal is to quantify potential relationships between cloud type amounts 

and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different 10 

characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of 

individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The 

cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud 

top pressure and cloud optical thickness in one-degree grid cells, and the precipitation frequencies come from the Tropical 

Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) dataset aggregated to the same grid. 15 

It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for 

cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land 

compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the 

greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong 

precipitation with “weak” (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between 20 

weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation 

anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when 

cloud types are known, and this is even more true over land than over ocean.  

1 Introduction 

Attempts to estimate precipitation from cloud observations have a long history dating back to the era of first passive thermal 25 

infrared observations of clouds (e.g., Richards and Arkin 1981). Enlisting numerical models to help with the interpretation of 

observations has not been as helpful as hoped since these models generally do not produce coherent relationships between 

clouds and precipitation (e.g., Stephens et al. 2010; Gianotti et al. 2012; Jiang et al. 2015), with even cloud-resolving models 

explicitly representing precipitation processes facing challenges in that respect (e.g., Kooperman et al. 2016; Matsui et al. 

2016). In the case of atmospheric global circulation models (AGCMs), it is nearly impossible to resolve individual 30 
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precipitating processes due to the sub-grid nature of the problem and the excessive computational burden. Hence, for AGCM 

evaluation, and also for observation-based water budget studies, a synoptic approach for identifying the relationships 

between cloud and precipitation has been deemed an inevitable compromise.  

One example of employing a synoptic approach is the use of the concept of a “cloud regime” (CR) also known as “weather 

state” (WS; Jakob and Tselioudis 2003; Rossow et al. 2005; Oreopoulos and Rossow 2011; Tselioudis et al. 2013; 5 

Oreopoulos et al. 2014, 2016) to study precipitation characteristics. CRs represent the dominant mixtures of cloud types, and 

can be used as a framework to categorize cloud data in a grid (e.g., Level-3 satellite products). Using the International 

Satellite Cloud Climatology Project (ISCCP) WSs defined in the extended tropics (35°S−35°N), Lee et al. (2013) provided a 

comprehensive picture of precipitation characteristics for each WS, with an additional focus on the relationship between the 

most convective regime (WS1) and precipitation. Rossow et al. (2013) also conducted similar analysis but for precipitation 10 

extremes using ISCCP WSs for the deep tropical zone of 15°S−15°N. While such CR-based approaches provide valuable 

information about the cloud-precipitation relationship at large scales, the precipitation composites by CR encompass large 

spreads which obscure details of the relationship. Since CRs contain mixtures of clouds types by design, and therefore 

contain considerable cloud variability, ambiguities in the cloud-precipitation relationships are hard to resolve.  

Cloud-precipitation relationships can, however, be examined at a more detailed level with coincident precipitation profile 15 

and cloud measurements. An example of this is the “cloud and precipitation feature database” of Liu et al. (2008). The 

database was derived from observations by the precipitation radar (PR), the Tropical Rainfall Measuring Mission (TRMM) 

Microwave Imager (TMI), the Visible and Infrared Scanner (VIRS), and the Lightning Imaging System (LIS) aboard the 

TRMM satellite. The authors performed several case studies with this dataset that contrasted continental and oceanic 

precipitating cloud systems, and found that oceanic storms were generally horizontally larger at 2 km altitudes, but 20 

continental storms tended to be vertically more coherent, with a higher top and more severe rainfall. Houze et al. (2015) also 

reported similar results using solely vertical rainfall profiles from the TRMM PR. While these studies provided a more 

detailed look at the cloud-precipitation relationship thanks to the high resolution of the TRMM PR (4-5km footprint at 

nadir), the penalty was narrow horizontal coverage (swath widths of 215 km before orbit boost and 247 km after orbit boost).  

Our study aims to go beyond widely known cloud-precipitation associations (such as geometrically deep and optically thick 25 

clouds producing stronger rainfall), and to examine instead more carefully the details of the connections between clouds and 

precipitation for situations that also include non-heavy precipitation. We thus strive for generality of results by covering the 

entire tropics and for overcoming the ambiguity of CR-based studies by taking advantage of the ability to break down 

individual grid-box cloud fractions with the aid of joint cloud histograms. Hence, our paper revisits and explores anew the 

mesoscale cloud-precipitation relationship via the synoptic approach by employing a Moderate Resolution Imaging 30 

Spectroradiometer (MODIS) gridded cloud dataset (King et al., 2003; Platnick et al. 2003) and the TRMM Multi-satellite 

Precipitation Analysis (TMPA) dataset (Huffman et al., 2007, 2010). While the MODIS Level-3 data are provided at 1°×1° 

resolution, the 2D joint histogram of cloud optical thickness (τ) and cloud top pressure (pc) contains pixel-level cloud 

information which can be combined with the sub-grid variability of precipitation at the 1°×1° scale, available by virtue of the 
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finer 0.25°×0.25° spatial resolution of TMPA. While still coarser than the TRMM PR dataset, the combined MODIS and 

TMPA dataset covers the entire tropics every single day, allowing better generalization of the daytime relationship between 

clouds and precipitation. We seek to answer questions such as: What are the general expectations and limitations in 

predicting precipitation given a cloud type in the extended tropics? Is there a closer relationship between certain precipitation 

rates and cloud types? Do answers to the above questions differ substantially between oceans and continents? 5 

The next section introduces the concept of “precipitation histogram” and how it can be matched and correlated to sub-grid 

cloud type fractions at the grid level. A comprehensive examination and interpretation of cloud and precipitation co-

variability over tropical land and ocean follows in Section 3. In addition to summarizing the results, the concluding Section 4 

calls attention to the new insights that emerge from this study and challenges that remain to be addressed about the nature of 

cloud-precipitation coupling. 10 

2 Data and Methodology 

2.1 Cloud and Precipitation Data 

Our passive cloud retrievals come from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard 

the Terra and Aqua satellites. The MODIS cloud dataset (MOD08_D3 and MYD08_D3; King et al., 2003; Platnick et al., 

2003) provides Level-3 cloud products at daily time scales with 1°×1° horizontal resolution. Among various cloud products, 15 

we focus on the 2D joint histogram of cloud optical thickness (τ) and cloud top pressure (pc). The histogram is composed of 

cloud fraction (CF) values along 7 classes of pc and 6 classes of τ (for a total 42 histogram bins), and contains pixel-level 

cloud variability information at the 1° scale. The most recent version of the MODIS atmospheric datasets, known as 

“Collection 6” (Platnick et al., 2017), provides a separate histogram for “partially cloudy” (PCL) pixels, flagged as such by 

the so-called “clear-sky restoral” algorithm (Pincus et al., 2012; Zhang and Platnick, 2011). The PCL pixels represent usually 20 

cloud edge pixels for which the cloud property retrievals are deemed more uncertain (Cho et al., 2015). We opted to include 

PCL pixels in our analysis by adding the PCL histogram to the nominal histogram because, by doing so, the MODIS cloud 

climatology becomes more consistent (see Oreopoulos et al. 2014) to that by ISCCP (Rossow and Schiffer, 1991, 1999), 

which has a long track record in cloud research and can potentially be used in a study similar to this one. In this study, the 

joint histogram bins are coarsened from 42 bins to 9 cloud types because of practical considerations (see subsection 2.3) as 25 

well as our desire to draw an analogy with the ISCCP cloud types (Chen et al., 2000; Rossow and Schiffer, 1999). 

The precipitation dataset used in our study is the 3B42 research product (version 7) of Tropical Rainfall Measuring Mission 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) (Huffman et al., 2007, 2010; Huffman and Bolvin, 2015). The 

TMPA pursues the “best” satellite precipitation estimates using TRMM Microwave Imager (TMI) and Precipitation Radar 

(PR) data as calibrators in merging measurements from several microwave and infrared sensors, and monthly gauge data 30 

(over land) from the Global Precipitation Climatology Centre (GPCC; Huffman et al. 2007). The horizontal resolution of 

TMPA is 0.25°×0.25° covering 50°S to 50°N. TMPA is available from January 1998 with 3-hourly resolution, but we use 
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only the period from December 2002 to November 2015 which overlaps temporally with Aqua and Terra MODIS data. Since 

we pursue the co-variability of cloud and precipitation, and one of the essential pieces of cloud information is the optical 

thickness which is only available during daytime, our study relies on measurements only around the Terra and Aqua 

overpasses of 10:30 am and 1:30 pm local solar time (LST), respectively. We restrict our study to the extended tropical 

region (35°N − 35°S) to avoid ambiguities in the interpretation of the MODIS joint histograms which include progressively 5 

more temporal variability towards higher latitudes as data from successive spatially overlapping orbits fall within the same 

1°×1° grid cell. Still, we should note that when various aspects of the analysis were tested on the full TMPA spatial coverage 

(50°N − 50°S), the results were not substantially different. Lastly, since it is well-established that precipitation properties 

over land and ocean are quite different (e.g., Williams and Stanfill 2002; Zipser et al. 2006; Matsui et al. 2016), we maintain 

via the MODIS land-water mask (Carroll et al., 2009) distinct land and ocean results throughout our analysis. At the 1°×1° 10 

resolution, a grid cell is marked as ocean when the water mask area is greater than 90%, while it is marked as land when the 

water mask area is smaller than 10%. For our extended tropics domain this definition assigns 71.1% of the grid cells to the 

ocean and 24.1% to the land category. 

The quality of the TMPA product differs between land and ocean, mainly due to two factors: (1) Gauge adjustment which 

reduces systematic biases in land precipitation, and (2) Satellite retrieval algorithm differences which result in lower random 15 

errors over ocean (Liu, 2016; Sapiano and Arkin, 2009; Tian and Peters-Lidard, 2010). We assert that our findings about 

ocean-land differences are not much affected by these algorithm differences because, first, random errors should be 

suppressed due to large sample size, and second, our analysis is largely based on deviations from the mean state. 

Nevertheless, it is understood that TMPA overall performs less reliably in certain situations such as continental warm rains 

(Kidder and Vonder Haar, 1995; Kummerow et al., 2015).  20 

2.2 Matching Precipitation Data to Cloud Grid  

Because the 3B42 dataset has higher spatial resolution than the MODIS Level-3 cloud dataset, we resample it to the 1°×1° 

resolution of the MODIS dataset. Previous studies averaged precipitation rates to a single value representing grid mean (e.g., 

Lee et al. 2013; Rossow et al. 2013). In this study, a marginal histogram of 3B42 0.25°×0.25° grid precipitation rates is 

created for each 1°×1° grid cell. The idea of such 1°×1° precipitation histograms was drawn from our other main data set, the 25 

MODIS joint 2D histogram of pc−τ, which preserves a certain degree of sub-grid cloud information (although not of the 

actual spatial distribution of the sub-grid variability). So, in a sense, sub-grid information about precipitation rate can also be 

preserved in the form of a histogram by assigning the 16 values (when there are no missing values) of precipitation rate at 

0.25°×0.25° resolution to pre-defined bins to create a marginal histogram at 1°×1° grid cell. The histogram is normalized by 

dividing each bin count by the total count in the histogram bins, i.e. 16, in the default case of no missing value. Hence, each 30 

bin value falls between 0 and 1 in multiples of 1/16, and sub-grid precipitation rates are interpreted as areal fractions of 

specific ranges of precipitation rates. One of the 16 precipitation histogram bins corresponds to “no-rain” and the remaining 

15 bins to rain rates greater than zero. Histogram bin boundaries are selected with fifteen logarithmically-spaced intervals to 
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ensure a more even distribution of counts (see Fig. 1). Figure 1 shows the distribution of precipitation rate of the original 

TMPA data in our extended tropics domain according to this histogram binning approach. We see that the amount of missing 

data is negligible, and that the “no-rain” bin has an 89.5% share of all data points. The rain rate around 1 mm/hr has a 

maximum share near 1.1%, and extreme values are below 0.4% at both low and high rain rates. 

In addition to the trivial matching of grid cells, the TMPA and MODIS observations also need to be matched in time. Since 5 

MODIS Level-3 cloud data come from the aggregation of retrieved satellite observation along the Terra or Aqua paths, and 

since these satellites are in a sun-synchronous orbit, each grid cell of a daily MODIS map has a limited range of nominal 

LST, but has a varying Coordinated Universal Time (UTC), the time-keeping system of TMPA. The UTC of each grid cell 

can be estimated from the mean solar zenith angle (SZA) available as a MODIS Level-3 variable, and the latitude and time 

information for each grid cell. Because of minimal overlap of satellite orbits in the tropics, the mean SZA value is a result of 10 

mostly (small) spatial variations within the 1°×1° grid cell. After identifying the UTC corresponding to the grid cell of cloud 

data, the proper TMPA data points can be extracted. Since the TMPA data is available at 3 hour-intervals, TMPA data 

centered, say, at 12 pm UTC, will be matched with MODIS data having UTC between 10:30 am and 1:30pm.  

The histograms of TMPA tropical rainfall rate that matches Terra and Aqua paths spatially and temporally are also shown in 

Fig. 1. One notable change from the original TMPA data to Terra- or Aqua-matched data is that the portion of missing data 15 

now surges to over 5% of total data points. Most of these missing data are traced back to unavailable Level-3 MODIS data, 

for reasons such as absence of clouds or gaps between consecutive Terra-Aqua orbits at low latitudes. Other differences in 

occurrence frequencies between original and matched data are probably due to the diurnal cycle of precipitation. At the Terra 

overpass time of around 10:30 am (LST), precipitation is relatively weak over both land and ocean (e.g., Yang and Smith 

2006; Kikuchi and Wang 2008). This appears in Fig. 1 as Terra-matched precipitation having smaller frequencies than the 20 

original and the Aqua-matched precipitation, although it is somewhat improper to directly compare Terra- or Aqua-matched 

data with fully sampled data because the higher ratio of available (non-missing) data in the fully sampled data propagates as 

higher relative frequency in the various precipitation bins. It is also notable that, for weak-to-moderate precipitation rate (less 

than 1mm/hr), even Aqua-matched precipitation is (slightly) lower in percentage terms than fully-sampled TMPA 

precipitation, which can be interpreted as weak-to-moderate precipitation being more frequent outside the time windows of 25 

Terra and Aqua overpasses. 

2.3 Analysis Method and Simplification of Cloud and Precipitation Histograms 

The simplest and most straightforward method to measure the co-variability of two variables is to calculate their cross-

correlation coefficients, namely Pearson’s r. In this study, the cloud fraction values in each bin of the pc-τ joint histogram 

and the relative frequencies in the precipitation histogram form large arrays (O(1,000,000)) in the spatio-temporal domain, 30 

from which we can calculate correlation coefficients as time and location varies. The original resolution of the pc-τ and 

precipitation histograms yields 672 (= 42 CF bins × 16 precipitation bins) correlation coefficients. Analysis and visualization 
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of such a large number of coefficients are impractical, hence we pursue an analysis where both the cloud and precipitation 

histograms are coarsened.  

Reducing the 42 bins of the cloud histogram allows us to make a more intuitive physical connection with the 9 standard 

ISCCP cloud types of Rossow and Schiffer (1999). While these cloud types were given the same names as the standard cloud 

types seen by human observers from the ground and have some affinity with them, they are only loosely connected with the 5 

widely recognized traditional cloud types. Figure 2 shows the pc and τ range for each cloud type. Low and mid-level cloud 

types are composed of 4 CF bins (= 2 pc classes × 2 τ classes) while high cloud types are composed of 6 CF bins (= 3 pc 

classes × 2 τ classes). Hence, the CF value of each cloud type comes from the summation of either 4 or 6 CF bin values of 

the original 2D joint histogram. 

Similarly, the 16 histogram bins of precipitation are reduced to 6 groups. The “no-rain” bin is unchanged, and the other 15 10 

bins of measurable rainfall are resampled to 5 precipitation groups (each called as a “P-group” hereafter) by summing three 

consecutive precipitation bins, as shown at the bottom of Fig. 1. Each P-group is labelled from P1 to P5, with P1 

representing the lightest precipitation, and P5 representing the heaviest precipitation. For simplicity, the same symbols are 

henceforth also used to represent the frequency of occurrence within these groups, since their meaning is always clear by the 

context. 15 

Our histogram coarsening reduces the number of correlation coefficients to 54 (= 9 cloud type CF values × 6 P-group 

frequencies). Since the Terra and Aqua data (and matched precipitation data) are considered as a single ensemble, our results 

represent the local cloud-precipitation co-variability for the 6-hour daytime period spanning 1.5 hour before the Terra 

overpass to 1.5 hour after the Aqua overpass. 

3 Land-Ocean Difference of cloud-precipitation relationships 20 

3.1 Basic Statistics and Composite Means of Cloud and Precipitation Data 

Before examining correlations between cloud and precipitation data, it is illuminating to examine the basic statistical 

information and mean states of both histograms from which correlations are extracted. First, we examine the P-groups that 

co-exist with certain cloud type fractions at the grid-level. Figures 3 and 4 show the conditional probability of P-group 

occurrence under the condition that a particular cloud type exists over ocean (Fig. 3) and land (Fig. 4). For example, for all 25 

oceanic 1°×1° grid cells with Cumulonimbus (Cb) clouds occurring, about 52% of the grid cells report P5 precipitation at 

one or more 0.25° sub-grid cell(s) (Fig. 3a, upper-right bin). The threshold CF that determines cloud occurrence is set to 

6.25%, i.e. the same threshold fraction (1/16) that defines precipitation occurrence. We note that P-groups are not mutually 

exclusive because several P-groups can occur simultaneously in a 1°×1° grid cell.  

Over ocean, the cloud type co-occurring the most with precipitation rates of medium to heavy intensity is, not surprisingly, 30 

Cb. The P-group most likely to occur alongside Cb clouds is P4 with a probability of 0.77 (Fig. 3b). The probability of P5 

group occurrence is lower at 0.52, but also comes with an overall P5 population smaller than that of P4 (Fig. 1 and Table 1). 
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When precipitation of any intensity is considered (Fig. 3f), besides Cb having the highest probability of precipitation, 0.90, 

oceanic Nimbostratus (Ns) also emerges with a high probability of 0.75. The no-rain occurrences are, not surprisingly, better 

associated with thin and/or low clouds (so-called “weak” clouds), topped by the 0.82 probability for Cumulus (Cu) clouds. It 

is notable that no-rain probabilities are clearly distinguishable from those of the weak P1 or P2 rain groups not only by the 

probability of these P-groups occurring (we note that the population of the no-rain case is much larger), but also by how the 5 

probability varies with cloud type within the precipitation group (e.g., compare Cu and Ns in Figs. 3e and 3g as an extreme 

contrast). Comparing Figs. 3 and 4, we see that land clouds generally have a smaller chance of precipitation co-existing with 

clouds at the 1° scale. Even the P4 precipitation probability of Cb clouds is only 0.54 (Fig. 4b), far lower than its oceanic 

counterpart of 0.77. For the case of rainfall with any intensity (Fig. 4f), the precipitation probability of Ns is only 0.35 

compared to 0.75 over ocean. The precipitation probability of mid-level Altostratus (As) also decreases from 0.53 to 0.31, so 10 

mid-level clouds seem particularly less active precipitation producers over land. In addition, the lightest rain group P1 over 

land is not associated with any particular cloud type (Fig. 4e vs. Fig. 3e) while the no-rain case exhibits strong probability 

dependence on cloud type. The issue of less rain over land is also covered in the next composite plots (Figs. 5 and 6). 

Figures 5 (ocean) and 6 (land) show composite mean cloud and precipitation histograms, for occurrences of the strongest 

precipitation groups P5 and P4 (i.e., at least one of the sub-grids within the 1°×1° grid cell has a precipitation rate belonging 15 

to the P5 or P4 class). When P5 occurs over ocean (Fig. 5), both cloud and rainy fractions exceed those of the P4 cases. On 

the cloud side, Cb exhibits the largest increases in CF when moving from the P4 to the P5 composite. For the P5 composite, 

the largest CFs (red color) are located in the bins with pc below 310 hPa and the τ bins extending from 9.4 to 60, while in the 

P4 composite, CF peaks in the bin bounded by 310 and 180 hPa, and with τ between 3.6 to 23. Conversely, thin (  < 3.6 ) 

cloud CFs as well as stratocumulus (Sc) CF are smaller in the P5 composite than the P4 composite. However, it cannot be 20 

determined from this analysis alone whether the increased amounts of thin and Sc clouds in the P4 composite are directly 

linked with the occurrence of P4 precipitation, or are a consequence of increased chance of co-existence with other clouds 

producing P4 precipitation. The CFs of mid-level clouds increase only slightly from P5 to P4 composites in terms of absolute 

values, but these increases are quite large in a relative sense because absolute CF values for these clouds are very small in the 

MODIS climatology. 25 

Consistent with the CF changes, the total rainy fraction, defined as the sum of the 15 precipitation histogram bin frequencies 

excluding the “No-rain” bin in 1°×1° grid cells, also increases in the P5 composite (0.794 vs. 0.627). The mean precipitation 

histogram in the P5 composite (Fig. 5 top right) exhibits a peak within the P5 group, but the fraction of total precipitation in 

the P4 group is larger. This does not come as a surprise because, first, the absolute population of P4 is higher than that of P5 

(Fig. 1) and second, most P5 precipitation events co-occur with P4 precipitation events at 1°×1° resolution (Table 1). The P4 30 

fractional contribution in the P5 composite is also larger than the P4 contribution in the P4 composite (Fig. 5 bottom right), 

while the light to moderate P-group (P1-P3) fractions are slightly larger in the P4 composite compared to the P5 composite. 

This indicates that stronger precipitation events also have a weaker tail towards lower rainfall rates. In terms of total rainy 

fraction, considering that approximately 38% of the P4 composite population overlaps with the P5 composite (Table 1), we 
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see that the spatial extents of oceanic rain systems producing P4 but not P5 are often much smaller than systems producing 

P5. 

We also examined the geographical distributions of P4 and P5 occurrence frequency (supplementary Fig. 1), and found that 

the distribution maps look very similar, with the regions significantly skewed towards one of P4 or P5 being very few. This 

result suggests that the P4 and P5 composites in Fig. 5 are related and likely respectively capture the developing and mature 5 

stage of mesoscale convective systems (MCSs). The review of Houze (2004) and Chapter 9 of Houze (2014) describe MCS 

as the combined system of a large region of stratiform precipitation paired with individual or clustered Cb clouds, yielding 

thus a variety of cloud and precipitation structures (Houze et al., 1990). The P5 composite patterns of cloud and precipitation 

shown in Fig. 5 are in accordance with such MCS characteristics, i.e. strong convective clouds and a broad spectrum of 

precipitation. 10 

Figure 6 shows the same P4 and P5 composite means as Fig. 5, but over land. Comparing the top and bottom panels of Fig. 

6, we see that the general characteristics of the differences between P4 and P5 land composites are similar to their oceanic 

counterparts. For example, the total CF and rainy fraction increase from the P4 to the P5 composites, accompanied by larger 

CFs of Cb clouds, and P4 group fractional contribution in the P5 composite. However, there are also notable differences, 

such as total CF difference between P4 and P5 composites being smaller over land than over ocean. Over land, smaller CFs 15 

can produce P5-magnitude precipitation while larger CFs are needed for P4-magnitude precipitation compared to ocean. The 

total rainy fractions of P4 and P5 composites are also smaller over land. For example, when P5 occurs, 79% of oceanic sub-

grids at 1° scales are precipitating, while the same is true for only 59% of continental sub-grids. For P4 composites, the 

values are 63% over ocean vs. 47% over land. These are strong indications that continental systems producing heavy rainfall 

are in general smaller in size than their oceanic brethren (Liu et al. 2008; Houze 2014, Chapter 9; Houze et al. 2015). 20 

The distributions of total rainy fraction as well as grid mean cloud properties by P-group are further examined in Fig. 7, 

which shows boxplots of total rainy fraction, CF, log10(τ), and pc distributions. Over ocean, both total rainy fraction and CF 

generally increase monotonically with precipitation. However, the picture is somewhat different for land. From P2 to P5, 

both the median and mean values of land CF are quite similar (Fig. 7b). As a result, in the P2 case, the land CF median is 

nearly 10% greater than the ocean CF median, while it becomes 5% smaller than its ocean CF counterpart in the case of P5. 25 

At the same time, the total rainy fraction over land appears to be monotonically increasing in the same way as over ocean, 

albeit with a notably smaller absolute value and slope of growth. Hence, it appears that over land, similar amounts of CF 

(e.g., 70% to 80%) in a 1°×1° grid cell are involved in a broad range of precipitation rates, while the fraction of raining 

clouds in the grid cell is much smaller compared to ocean. Collectively, these results indicate reduced predictability of 

precipitation from knowledge of CF over land, at least with the precipitation dataset at hand.  30 

Houze (2014, Chapter 9) and Houze et al. (2015) noted that shallow and isolated clouds producing “warm rain” are mostly 

oceanic phenomena, while the size of MCSs is generally larger over ocean than land. These two different precipitating 

sources can explain the big contrast over ocean of total rainy fraction between P2 (median 35%) and P5 (median 85%); over 

land the difference is less than 30%. In addition, Figs. 7c and 7d show that light-to-medium precipitation groups (P1-P3) 
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over ocean are associated with optically thinner and shallower clouds, another evidence of the prevalence of marine “warm” 

rain processes. Note also the larger variability (taller inter-quartile box) of oceanic pc for light precipitation compared to 

heavy precipitation, indicating that the former is harder to relate to particular cloud types. For continental light precipitation, 

associated clouds are optically thicker and of higher altitude than oceanic counterparts, but TMPA’s potential weakness in 

identifying such precipitation, as described in section 2.1, may be affecting the land results of Fig. 7. 5 

In summary, the 1°×1° spatio-temporally matched cloud and precipitation data suggest that prevailing features such as 

contrasting horizontal size of oceanic and land MCSs can be clearly detected by this study’s methods. In the next subsection, 

the covariability of cloud and precipitation is examined in detail using explicit correlation analysis. 

3.2 Correlations between Cloud and Precipitation Fractions 

As stated previously, to measure the co-variability of cloud and precipitation, we calculate cross-correlation coefficients 10 

between the CFs of the 9 cloud types and the normalized frequencies (equivalent to fraction of precipitating area) within the 

5 P-groups. Figures 8 and 9 show correlations of cloud types for each P-group as well as all combinations of consecutive 

cumulative P-group frequencies over the oceanic and land regions of our extended tropical domain. We note that, when the 

fraction sum of specific P-group(s) is zero, the data point is excluded from the calculation of correlations. Hence, for 

example, correlation coefficients with P5 over ocean (Fig. 8a) are calculated with approximately 4.5% of the total data 15 

available. Even over land, the sample size for this case (Fig. 9a) still exceeds one million, placing the 99% significance level 

to less than 0.005 in correlation coefficient absolute value. The statistical significance level was calculated here using a 

bootstrapping method which randomly shuffles the array, but in a way that considers the effect of autocorrelations between 

neighboring grid cells (i.e., shuffling by “chunks”; Kunsch 1989; Léger et al. 1992; Liu and Singh 1992). Consideration for 

the effect of neighboring grid cells is important because neighboring grid cells are usually not independent (e.g., a cloud 20 

system can occupy multiple grid cells); without this consideration, the degree of freedom will be overestimated, and thus the 

significance level underestimated. With the significance level quoted above, all correlations in Figures 8 and 9 are 

statistically significant. 

Examining first oceanic cloud-precipitation coupling, Fig. 8 reveals that strong correlations, both negative and positive, 

occur in the panels on the left, whilst correlations weaken as one moves to the right. The leftmost column panels consist of 25 

P-group(s) that include P5, the group of heaviest precipitation, while as one moves to the right, heavier precipitation is 

progressively excluded. The overall picture then is that of strong correlations corresponding mostly to heavy precipitation 

and of light precipitation correlating poorly with all cloud types. The leftmost column panels of Fig. 8 indicates that positive 

coefficients occur for high cloud types of moderate to strong optical thickness, namely Cirrostratus (Cs; probably includes 

many anvils) and Cb (deep convection core), while negative values occur for low cloud types that are also optically thin. In 30 

the 5 panels of the leftmost column, Cb clouds always have strong positive correlations with precipitation, a result that 

comes as no surprise. For the correlation of Cs clouds to become positive and then increase, lighter precipitation has to be 

added to P5. For example, when only P5 values are used (Fig. 8a), the correlation coefficient of Cs clouds is negative (-0.16), 
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but changes to 0.22 after P4 is added to P5 (Fig. 8b). This suggests that lighter rain in the vicinity of the heaviest rain is more 

closely related to Cs (or anvil) clouds. A similar trend of stronger correlations when lighter precipitation is added also ensues 

for low and thin Cu clouds, although with a negative sign in this case. In Fig. 8a, a strong negative correlation is seen with 

(high and thin) Cirrus (Ci) clouds, and as lighter precipitation is added, the peak of negative correlations moves towards 

lower Cu clouds.  5 

In order to get a sense of the physical reality represented by Pearson’s r, we examined two-dimensional histograms of cloud 

type CF and P-group for both strong positive and strong negative correlations (Supplementary Figs. 2 and 3). We note that 

more samples are available for zero or small amount of cloud type fraction for each case, and the distribution patterns look 

otherwise reasonable. We also examined the geographical dependence of these correlations and found them generally 

insensitive to location (Supplementary Fig. 4). 10 

Notable patterns in correlation coefficients are also detected in the second left column panels which show correlations with 

P4 precipitation included, but without P5. Similar to the leftmost column panels, Cb, Cs, and Cu clouds show the stronger 

correlations with positive or negative signs. One difference from the P5 cases is that, in Figs. 8e, 8h, and 8l, the positive 

correlations of Cs clouds are stronger than those of the thicker Cb clouds. The correlation coefficient values of Cs clouds in 

these panels are quite similar to the values for the same clouds in the leftmost column (which includes P5 precipitation). This 15 

result suggests that it is actually Cs clouds that are related the most to the variability of P4 and lighter precipitation.  

Moving now to the land regions of our extended tropical domain, we use the same “correlation pyramid” to note that the 

relationship between high and optically thick Cb clouds and P5 heavy precipitation is of positive strength similar to that over 

oceans (Fig. 9). However, other details are quite different between land and ocean. First, the negative correlations of Cu 

clouds in the leftmost column panels are weaker. In Fig. 8, the peak negative correlation values reached -0.40 and occurred 20 

in panels (d) and (g) which include the moderate to weak precipitation of the P3 and P2 groups. In Fig. 9 on the other hand, 

the peak negative value weakens to -0.23 and occurs in panel (b), which represents the sum of only P4 and P5 precipitation; 

the negative correlations weaken as lighter precipitation is added. This result suggests better chances of Cu clouds and P5 

precipitation co-existing in 1°×1° grid cells over land compared to ocean. This observation may be related to our earlier 

finding inferred from Figs. 5-7 that the size of precipitating systems is much smaller over land than ocean.  25 

Secondary but still noteworthy differences between land and ocean are identified in the correlations between Cs clouds and 

precipitation that includes the P4 and P3 groups (second and third column panels from left). Previously in Fig. 8, the 

maximum correlation values in the second-from-left column were the ones correlated with Cs clouds, up to 0.36. In the third 

column associated with P3 precipitation, correlations with Cs clouds weaken to 0.16. In contrast, Fig. 9 shows that the 

strongest correlations of the second column are those for Cb clouds, not Cs. In the third column, the correlations with Cs 30 

clouds do not weaken as much, with a 0.21 correlation value being reached in P-groups that include P3. This pattern 

indicates that continental high clouds are better correlated with lighter precipitation. It is also notable that correlation 

coefficients with Cs clouds in the first column of Fig. 9 (including P5 over land) reach just 0.25, while those in Fig. 8 
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(ocean) are as high as 0.39. A possible explanation of the above correlation results is that thick anvils of continental MCS 

(Cetrone and Houze, 2009; Yuan et al., 2011) are more frequently classified as Cb rather than Cs (as defined in this study). 

For light precipitation, the absolute values of correlation coefficients are smaller than those for heavy precipitation 

commonly found over land and ocean, reflecting the fact that the mechanisms and origins of light precipitation exhibit a 

greater variety. Nevertheless, a meaningful difference between land and ocean can be seen in Figs. 8 and 9. When comparing 5 

Figs. 8n and 8o with 9n and 9o, peak correlations around 0.1 occur for Stratus (St) over ocean, but similar peak correlations 

over land occur even for Cs and Cb. This result suggests that over land even light precipitation is more frequently related to 

strong convective activity while oceanic light precipitation has a greater chance of being produced by “warm rain” 

mechanisms, as noted at the end of subsection 3.1.  

In summary, continental Cs and Cb clouds co-exist with a broader range of precipitation, but are also more weakly correlated 10 

with them, compared to their oceanic brethren. This result is consistent with the previously noted climatological features of 

grid mean cloud properties shown in Fig. 7. For example, the median pc for the P2 group over land in Fig. 7d was already 

below 440hPa, while for oceanic clouds the median pc reached such values when precipitation was strong enough to belong 

to the P4 group. The optical thickness was also generally larger for land clouds (Fig. 7c). It is possible that TMPA is missing 

some “warm” rain events over land due to microwave retrieval inadequacies as stated in subsections 2.1 and 3.1. For heavy 15 

precipitation, Level-2 TRMM observations led Liu et al. (2008) to conclude that tropical land storms are more vertically 

developed, i.e. optically thicker clouds with higher tops, but also spatially more confined than oceanic storms (see also 

Houze et al. 2015; Matsui et al. 2016). Hence, precipitation over land occupies a smaller area, resulting in weaker 

correlations at scales of one-degree. Differences in correlations between Figs. 8 and 9 therefore reflect land/ocean 

differences in the nature of tropical storms or MCSs.  20 

There are other intriguing aspects of cloud-precipitation co-variability in land and ocean, and these are examined more 

closely in the next subsection: (1) the origin of negative correlations and (2) correlation sensitivity to precipitation strength. 

3.3 Further Investigation for Correlation Features 

3.3.1 Negative correlations between precipitation and thin clouds 

In Figs. 8 and 9, we saw thin clouds having negative correlations with heavy precipitation. These negative correlations can 25 

be interpreted as thin clouds being rarer when heavy precipitation occurs, an interpretation that is consistent with empirical 

observation and expectations. However, since it is also seen that heavy precipitation is strongly related to thick and high-

level clouds (e.g., Cb), the negative correlation of optically thin clouds with heavy precipitation can also be interpreted as a 

contemporaneous negative co-occurrence relationship between optically thin low and optically thick high clouds. Please note 

that for a cloud type to be always (i.e., regardless of precipitation strength) anti-correlated with precipitation, its occurrence 30 

must be anti-correlated with that of other cloud types that are positively correlated with precipitation of a certain range. In 

order to examine these issues, we calculate internal correlations among cloud types based on the spatiotemporal variability of 
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their CFs. From all possible combinations, we elect to show results where one of the cloud types is either Cs or Cb when P4 

or P5 precipitation group occurs. These results for both land and ocean are shown in Fig. 10. For example, Figs. 10a (ocean) 

and 10d (land) show correlation coefficients between the CF of Cs and the CFs of all other cloud types for grid cells 

reporting P4 precipitation. We note that the samples used for Fig. 10 correlations are the same as those used for cloud-

precipitation correlations shown in Figs. 8 and 9, given the same precipitation conditions, namely P4 or P5 values greater 5 

than zero (i.e., Figs 10a, 10b, and 8c). 

Figures 10a, 10b, and 10c show correlation coefficients based on oceanic Cs and Cb CFs. The Cs clouds are strongly anti-

correlated with Cu and Sc clouds, while Cb clouds are furthermore also strongly anti-correlated with Ci clouds. In the cases 

of P5 precipitation presence (Fig. 10c), the anti-correlation between Cb and Ci CFs becomes even stronger. Actually, in this 

case, Cb clouds are anti-correlated with all other cloud types; i.e., when Cb CF increases at 1°×1° grid cell, CFs of other 10 

clouds decreases, and vice versa. These cloud type correlation patterns remind us of Figs. 8a, 8b, and 8c. For example, a 

comparison between Figs. 10c and 8a shows that the anti-correlation ordering by strength is the same, with Ci clouds coming 

first, Cu second, and Sc clouds third. This finding suggests that in tropical oceans P5 precipitation is mainly related to Cb 

clouds, and its anti-correlation with thin clouds is another expression of the anti-correlation between Cb and thin clouds. The 

exact nature of the anti-correlation are unknown because a passive sensor such as MODIS has limited skill in distinguishing 15 

between cases where the mid- and low-level clouds are absent and cases where they are obscured by high clouds.  

When focus shifts to the weaker P4 precipitation class, both Cs and Cb clouds anti-correlate with low Cu and Sc clouds, and 

the anti-correlation is only slightly weaker for Sc than Cu (Figs. 10a and 10b). Previously however, Fig. 8c indicated that the 

anti-correlation between P4-class and Sc cloud is much weaker than that between P4 and Cu cloud (-0.15 vs. -0.28). This 

discrepancy is also seen in all panels of Fig. 8 representing correlations with moderate to heavy precipitation classes (third 20 

column from left), but is not seen over land (Fig. 9). While this issue will be discussed further in the next subsection which 

deals with correlation sensitivity, suffice it to say here that cloud-precipitation anti-correlations cannot be exclusively 

attributed to cloud type co-occurrence anti-correlations.  

When comparing oceanic and continental correlation patterns in Fig. 10 (top row vs. bottom row), we see the correlation 

patterns being quite similar, but with weaker correlation magnitudes over land. For example, Cs clouds in Fig. 10d remain 25 

strongly anti-correlated with Cu and Sc clouds, and Cb clouds in Fig. 10f are still anti-correlated with all other cloud types. 

Yet, differences between ocean and land clouds also emerge. First, particularly in the presence of non-zero P4 precipitation 

(Figs. 10d and e), there are stronger anti-correlations between Cb or Cs clouds and mid-level clouds over land. Previously in 

Fig. 6, we noted that mid-level clouds have greater CFs over land compared to ocean (even though their absolute value is 

much smaller than high clouds). The increased CFs of mid-level clouds over land may be related to a closer relationship with 30 

high-thick clouds, thus affecting the correlation strength. 

Another difference between ocean and land is the correlation between Cb and Cs in the presence of P5-class precipitation. 

Comparing Figs. 10c and 10f, the notable anti-correlation value of -0.27 over ocean weakens to -0.16 over land. This result 

indicates that Cb and Cs clouds are less mutually exclusive over land. Since the overcast condition (100% CF) in a 1°×1° 
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grid cell is more frequent over ocean (Fig. 7b), indicating that oceanic MCS can grow to sizes larger than 1°, there is a 

greater chance of competition between Cb and Cs over ocean to fill the grid cell. 

Lastly, we return to our previous point that the anti-correlation of CFs among cloud types does not explain all features of the 

anti-correlation between cloud and precipitation shown in Figs. 8 and 9. For example, comparing Figs. 8a and 9a, anti-

correlation between P5 and Cu cloud weakens from -0.25 (ocean) to -0.20 (land). However, Figs. 10c and 10f indicate that 5 

the anti-correlations between Cb and Cu clouds are almost the same for ocean and land (-0.37 vs. -0.36). This further 

supports the hypothesis that the frequencies of the P5 precipitation group and Cb CFs are more weakly coupled over land.  

3.3.2 Correlation sensitivity to heavy precipitation 

Correlations between cloud and precipitation shown previously in Figs. 8 and 9 indicated that the heaviest precipitation 

group has a solid relationship (correlation or anti-correlation) with cloud types, while weaker precipitation groups do not. 10 

This fundamental finding is examined more closely with more detailed CF-precipitation correlations. Figure 11 shows 

correlation coefficients over both ocean and land between the CF of various cloud types and the frequency of cumulative 

precipitation within original precipitation bins, from the 7th bin onward (i.e., 0.251 mm/hr and above). Hence, at the start of 

the x-axis the precipitation frequency corresponds only to the 7th bin, and as one moves along the axis precipitation 

frequencies for subsequent bins are progressively added until the end of the axis where the precipitation frequency represents 15 

the sum of all values from the 7th to 15th bin, namely the sum of frequencies of the P3, P4 and P5 groups. When compared 

to Figs. 8 or 9, Fig.11 shows essentially in more detail the evolution of correlation coefficients for the third row of the 

“pyramid”, i.e. correlation changes as one moves from Fig. 8f (9f) to 8e (9e) and then to 8d (9d) over ocean (land).  

Figure 11a shows the correlation change of high clouds (Ci, Cs, and Cb). Over ocean (solid line), the correlation of Cb cloud 

increases monotonically as heavy precipitation is added, while that of Cs cloud peaks when the 13th bin (2.51−3.98 mm/hr) 20 

is added; further additions of heavier precipitation results in correlation coefficients trending downward. Similar patterns are 

also seen for the land clouds in this category. However, one prominent difference between ocean and land is that the land 

clouds in this group tend to be more strongly correlated with weaker precipitation. For example, continental Cb clouds 

correlate better than oceanic Cb to precipitation up to the 13th bin. However, the correlation curve for oceanic Cb clouds 

exhibits a steeper slope after adding the 11th bin, and ends up surpassing continental Cb clouds with the heaviest 25 

precipitation. In the case of Cs cloud, the continental correlation curve peaks with the addition of the 11th bin (1.0−1.58 

mm/hr), while the oceanic peaks upon addition of the 13th bin. This result indicates that P4 precipitation over land tends to 

be more related with Cb than Cs clouds, contrasting what happens over ocean. In the case of Ci clouds, the anti-correlation is 

stronger at weak precipitation over land, consistent with the above argument, but the difference between land and ocean is 

not very pronounced given the small absolute values of coefficients compared to Cs and Cb clouds. 30 

For the mid-height cloud group shown in Fig.11b, a notable difference between ocean and land is seen for the As and Ns 

clouds. Oceanic Ns clouds have broad positive correlations around 0.1 for all precipitation bins. Oceanic As also have 

positive correlations with moderate-to-heavy precipitation bins, although they decrease to zero as heaviest precipitation is 



 14 

added. On the other hand, continental As and Ns clouds show only negative correlations with all precipitation strengths. As 

and Ns occurrences are smaller over ocean (3.8%, 1.7%) than over land (5.3%, 2.5%) in Figs. 5 and 6, P4>0), but shallower 

convection over ocean seems sufficiently strong to produce moderate-to-heavy precipitation from As and Ns clouds. 

In the case of the low cloud group shown in Fig.11c, first, the thickest St cloud’s correlation evolution pattern looks similar 

to that of As cloud above, although the presence of St cloud over ocean is even smaller than As (St CF=1.3% vs. As CF=3.8% 5 

when P4>0 in Fig. 5). The correlation pyramid of Fig. 8 has shown that the positive correlation of St cloud is stronger when 

it is related to weak precipitation classes (P1 or P2) which are not included here (but are included in Supplementary Fig. 5). 

Secondly, also notable is the contrasting correlation evolutions of oceanic Cu and Sc clouds, previously mentioned to have 

different magnitudes of anti-correlation. Oceanic Sc clouds have slightly positive correlations with the 7th and 7th-to-8th 

precipitation bins which then become negative as heavier precipitation is added. Similar to the St cloud, the positive 10 

correlation of Sc cloud is expected to strengthen with even lighter precipitation (Fig. 8 and Supplementary Fig. 5). For the 

oceanic shallow convection, our results of low and mid-level cloud correlations consistently indicate that shallower and 

thinner clouds (e.g., Sc) relate better to lighter precipitation, while higher and thicker clouds (e.g., Ns) relate better to heavier 

precipitation. In the case of Cu, the correlation coefficient is roughly the same between ocean and land for the 7th 

precipitation bin, but the correlation curves diverge as heavier precipitation is added. By the time the frequencies of all 15 

precipitation bins from 7th to 15th have been added, oceanic Cu clouds have twice as strong anti-correlation compared to 

their continental counterparts. As discussed previously in the context of Fig. 10, correlations among cloud fraction co-

occurrence, i.e. [Cu vs. Cs] or [Cu vs. Cb], are not as different between ocean and land as those shown here between clouds 

and precipitation. The weaker anti-correlation of continental Cu cloud with rainfall reflects then, at least partly, the less 

robust relationship between heavy precipitation and continental high clouds.  20 

3.4 Limiting factors and uncertainties 

3.4.1 Uncertainty of cloud type classification 

In this study, MODIS-observed clouds are classified into 9 cloud types adopted from previous ISCCP conventions (Chen et 

al., 2000; Rossow and Schiffer, 1999) for the sake of convenience. This classification is, strictly speaking, based on arbitrary 

τ and pc thresholds, and clouds assigned to each pair of bin boundaries will only loosely represent cloud types originally 25 

defined from morphological features seen by surface observers. Previously we noted that continental MCSs often include 

thick anvils (Cetrone and Houze, 2009; Yuan et al., 2011), but we can not confirm that these anvils are classified as Cs or Cb 

without knowledge of the cloud vertical extinction profile. Moreover, a passive sensor like MODIS has intrinsic limitations 

in identifying certain cloud types. Recent studies examining the nature of MODIS Cloud Regimes with active sensor 

observations from CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) show 30 

that similar MODIS joint histograms can have a variety of cloud vertical structures (Oreopoulos et al. 2017). In addition, 

Wang et al. (2016) showed that defining cloud types from CloudSat-CALIPSO observations where cloud vertical extent is 
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better known can yield large disagreements with cloud type definitions from the MODIS pc-  joint histogram. Such 

ambiguous definitions of cloud types from passive measurements may be the reason for substantial correlations between As 

and certain ranges of precipitation even though As is usually thought of as a non-precipitating cloud type. In summary, the 9 

cloud types in this study may not strictly correspond to their traditional, ground-based classification, so their relationship 

with precipitation should not be taken literally or juxtaposed with empirical knowledge. They are simply a convenient 5 

framework to organize findings about cloud-precipitation co-variability at 1° scales. 

Furthermore, the passive MODIS observations suffer from low skill in detecting multi-layer clouds. Specifically, MODIS 

generally only detects the cloud top of the highest cloud, so high clouds such as cirrus or stratiform anvil will mask the 

presence of shallow clouds. This may be a contributing factor to the negative correlations by Cu and Cs in Fig. 10. 

Unfortunately, this is a shortcoming of passive cloud observations that we have to live with in exchange for wider coverage. 10 

3.4.2 Uncertainty of TMPA and its temporal matching to MODIS 

As noted in subsection 2.1, TMPA quality varies by location. Over land, the strong surface emissivity forces microwave 

retrievals of precipitation to rely on the ice scattering signature, which may not be present for warm (or shallow) rain. While 

there are gauge adjustments over land, they depend on the quality and density of the gauges used and operate at monthly 

time scales—thus may not be able to correct the precipitation rates for individual rain events. Over ocean, gauge adjustment 15 

is unavailable, leading to potential systematic errors in the precipitation estimates. Furthermore, the retrieval of remotely 

sensed precipitation relies on algorithms that estimate surface precipitation rates from passive microwave brightness 

temperature, a task that remains challenging. In addition, due to the intermittency of passive microwave sensors on low-

Earth orbit satellites, gaps in the microwave field are filled-in by infrared-based precipitation estimates, which have poor 

accuracy as infrared brightness temperature in isolation is only indirectly related to precipitation (it is as if we were trying to 20 

correlate precipitation here with one-dimensional pc histograms). Hence, TMPA estimates possess considerable 

uncertainties. 

Furthermore, precipitating systems can develop quickly, especially over land. For example, a tropical squall line can develop 

in a few hours, so it is possible that MODIS and TMPA observe different stage of a system given that a 1.5 hour difference is 

possible in spite of our temporally matching. This situation can result in decreased correlation coefficients between high-25 

thick cloud and heavy precipitation over land. We are somewhat less concerned about this sampling issue because the 

lead/lag time between MODIS and TMPA is expected to be random, and therefore hopefully not a source of systematic bias. 

In the future, this concern can be ameliorated by using a higher temporal resolution precipitation dataset such as the 

Integrated Multi-satellitE Retrievals for GPM (IMERG; Huffman et al., 2015) instead of TMPA.   
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4 Summary and Conclusion 

The total amount, intensity, and frequency of precipitation should be organically related to the properties of the clouds from 

which it originates. However, due to different radiative signal strengths of hydrometeors at particular parts of the 

electromagnetic spectrum, precipitation and cloud observations are significantly decoupled, necessitating joint analysis of 

products developed for different purposes and from imperfectly matched observations. Even with such non-ideal data at 5 

hand, the community still aspires to answer fundamental questions such as: To what degree can precipitation be predicted 

given information about clouds? Conversely, with precipitation information at hand, can we provide good guesses about the 

nature of the clouds responsible? Is precipitation variability associated with cloud variability? Do answers to the above 

questions differ substantially between ocean and land? This paper seeks to contribute ideas and results that will help us make 

progress in obtaining concrete answers in the near future, especially if observations also make considerable strides.  10 

In order to advance the problem of understanding cloud-precipitation co-variability, we use contemporaneous multi-year 

datasets, widely-accepted concepts about how to classify clouds into various types from passive observations, and a 

combination of compositing and correlation analysis. We try to preserve some sub-grid variability information at one-degree 

scales by employing precipitation histograms built from the TMPA dataset, as well as MODIS joint histograms of cloud top 

pressure and cloud optical thickness, both of which are matched spatiotemporally. 15 

We find, not surprisingly, that correlations between deep convective clouds and heavy rainfall are strong and stand out 

clearly, dwarfing all other correlation combinations for both land and ocean. Land-ocean differences are also remarkable. For 

example, oceanic deep convection systems (e.g., mesoscale convective systems) are more likely to attain overcast conditions 

and to have larger fractions of rainy sub-grids within 1°×1° grid cells, both indicative of larger horizontal size than their 

continental counterparts, consistent with previous studies. Over land on the other hand, Cb and Cs clouds are related not only 20 

with heavy precipitation, but rather with a broader range of rainfall which translates to weaker correlations.  

Thin clouds, particularly Cu clouds (as defined here) are anti-correlated with moderate-to-heavy precipitation. The anti-

correlation is stronger over ocean, and the magnitude is comparable to the anti-correlation between Cu and high-thick clouds 

(Cb or Cs). The fact that oceanic deep convection often fills and outgrows the 1°×1° reference grid cell, is ultimately the 

cause of clearer relationships (less uncertainty) among heavy precipitation, high-thick clouds, and low-thin clouds.  25 

Over ocean, low-to-mid level clouds also exhibit positive correlations with precipitation of certain ranges, which represents 

shallow convection and warm rain processes. Among those clouds, the relatively higher and thicker Ns clouds relate better to 

mid to heavy precipitation, while lower and thinner Sc clouds relate better to light precipitation. In the end, positive 

correlations indicate that oceanic precipitation comes from a variety of cloud types and rain formation processes (warm rain) 

while most precipitation over land requires the presence of high clouds. Notably, the shallow continental clouds show better 30 

anti-correlations with heavy precipitation rather than positive correlations with light precipitation. It is conceivable that this 

result can change once detection of low clouds in the presence of high clouds and of warm rain over land improves (Field 

and Heymsfield, 2015; Mülmenstädt et al., 2015).  
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Collectively, we make a strong case that rainfall predictability is better over oceans than continents when cloud information 

is available. But even over oceans, there are significant uncertainties in linking certain ranges of precipitation with specific 

cloud types, at least with our approach. Our self-imposed objective to make the study general, multi-year, and applicable to 

half of the Earth’s surface, led us to Level-3 gridded data as the most appropriate choice. While some of the details seen in 

previous studies that used Level-2 data will unavoidably be lost, our datasets are good enough to extract major features of 5 

cloud-precipitation co-variability and allow us to claim that they are broadly representative of this co-variability in the 

tropics. We argue that the insensitivity of cloud-precipitation relationships to location (supplementary Fig. 4) and 

precipitation dataset (initial tests with recent GPM-IMERG data that may be presented in a future study yielded similar 

results) strengthen the validity of this conclusion.  

We expect that our study has the potential to form the basis of enhanced evaluation of precipitation in GCMs. A regime-10 

based analysis in the deep tropics by Tan et al. (2017) suggests that clouds and precipitation are more decoupled in models 

than in observations (see also Jing et al., 2017; Suzuki et al., 2015). Confirming that conclusion with the approach introduced 

in this study is a possible next endeavour. In addition, more effort should be extended to apply the framework in this study to 

various case studies with more appropriate datasets (e.g., using higher resolution precipitation dataset for regional/seasonal 

studies, or longer period dataset for climate studies) in order to increase further our degree of confidence about the cloud-15 

rainfall relationships. 
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Tables 

Table 1: Population percentages of grid cells with specific precipitation characteristics over ocean and land from 13 years of data 

in our 35°S-35°N extended tropics domain. 

 Ocean Land 

P0>0.5 85.21% 89.95% 

P4>0 11.13% 9.73% 

P5>0 4.52% 4.23% 

P4+P5>0 11.41% 10.13% 

P4>0 and P5>0 4.27% 3.83% 

 

Figures 5 

 
Figure 1: Histograms of TMPA original 0.25°×0.25° 3-hourly 3B42 precipitation data (green), and subsets matched 

with daytime Terra (blue) and Aqua (red), from December 2002 to November 2015 in the extended tropics domain. 

The boundaries that define the six simplified precipitation groups are shown at the bottom. 

 10 
Figure 2: ISCCP cloud types assigned to groups of bins in MODIS joint histogram of τ−pc.  

 
Figure 3: (a) to (e): Conditional probabilities of precipitation within a P-group (from TMPA) given occurrences of a 

cloud type (from MODIS) over ocean in the extended tropics from December 2002 to November 2015; (f): 

Conditional probabilities of any rain amount (sum of all P-group frequencies);  (g): Conditional probabilities of no 15 
rain co-occurring with cloud. The CF threshold for cloud type occurrence is 6.25%. 

 
Figure 4: Same as Fig. 3, but over land 

 
Figure 5: Conditional composite mean of 2D joint histogram of pc and τ (left column), differences from overall 20 
(unconditional) mean (middle column) and precipitation histogram (right column) over the extended tropical oceans 

for 13 years. Top row is for P5, while bottom row is for P4 precipitation. Blue lines in precipitation histograms 

indicate the overall mean. Both cloud and precipitation overall means correspond to the entire domain, and not just 

ocean. Numbers on cloud histograms are the cloud fraction (CF; %) of each cloud type, which is the sum of 4 or 6 

histogram bin values assigned to the cloud type. The sum of all values is equal to the total cloud fraction provided 25 
above each panel. Numbers on precipitation histograms are the fraction of each P-group, P1 (left) to P5 (right), 

obtained as the sum of three individual bin values. Total rainy fraction is the sum of all P-groups’ fractions (i.e., sum 

of 15 individual bin values). 

 
Figure 6: Same as Fig. 5, but over land. 30 

 
Figure 7: Box-whisker plot of (a) the total rainy fraction, (b) the total cloud fraction, (c) the grid-mean log10(τ), and 

(d) the grid mean pc conditioned by precipitation groups, separately for ocean and land. The median values are shown 

as red horizontal lines, and the mean values are shown as black crosses. The vertical width of the boxes indicates the 
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interquartile range (25th-75th percentile), and the whiskers extend from 5% to 95% values. Percentage numbers above 

the boxes indicate the occurrence ratio of each P-group relative to the total ocean or land grid cells. 

 

Figure 8: Cross-correlation coefficients in the extended tropical oceans for 13 years calculated between CFs of cloud 

types and precipitation group (individual or cumulative P-groups) values. The sum of all five precipitation groups 5 
shown in panel (k) corresponds to the total rainy fraction. 

 
Figure 9: Same as Fig. 8, but over land. 

 
Figure 10. Conditional cross-correlation coefficients between cloud joint histogram bin CF values calculated for 13 10 
years, based on (a) Cs CF over Ocean when P4>0, (b) Cb CF over Ocean when P4>0, (c) Cb CF over Ocean when 

P5>0, (d) Cs CF over Land when P4>0, (e) Cb CF over Land when P4>0, and (f) Cb CF over Land when P5>0. The 

percentage numbers above each panel are sample size ratios relative to the total number of ocean or land grid cells.  

 
Figure 11: Correlation coefficients between cloud type CF and precipitation histogram values, for (a) high clouds (Ci, 15 
Cs, and Cb), (b) Mid-level clouds (Ac, As, and Cu), and (c) low clouds (Cu, Sc, and St). Precipitation histogram values 

are added cumulatively from the 7th bin onward, so the sum from the 7th to the 9th bin corresponds to P3, and so on. 

Oceanic cloud results are shown in solid and continental cloud results are shown in dashed lines.   
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Figure 1: Histograms of TMPA original 0.25°×0.25° 3-hourly 3B42 precipitation data (green), and subsets matched 

with daytime Terra (blue) and Aqua (red), from December 2002 to November 2015 in the extended tropics domain. 

The boundaries that define the six simplified precipitation groups are shown at the bottom. 

 
 
  



 
 
Figure 2: ISCCP cloud types assigned to groups of bins in MODIS joint histogram of τ−pc.  
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Figure 3: (a) to (e): Conditional probabilities of precipitation within a P-group (from TMPA) given occurrences of a 

cloud type (from MODIS) over ocean in the extended tropics from December 2002 to November 2015; (f): Conditional 

probabilities of any rain amount (sum of all P-group frequencies);  (g): Conditional probabilities of no rain co-

occurring with cloud. The CF threshold for cloud type occurrence is 6.25%. 

 
 
 

 
Figure 4: Same as Fig. 3, but over land 

  



 
Figure 5: Conditional composite mean of 2D joint histogram of pc and τ (left column), differences from overall 

(unconditional) mean (middle column) and precipitation histogram (right column) over the extended tropical oceans 

for 13 years. Top row is for P5, while bottom row is for P4 precipitation. Blue lines in precipitation histograms indicate 

the overall mean. Both cloud and precipitation overall means correspond to the entire domain, and not just ocean. 

Numbers on cloud histograms are the cloud fraction (CF; %) of each cloud type, which is the sum of 4 or 6 histogram 

bin values assigned to the cloud type. The sum of all values is equal to the total cloud fraction provided above each 

panel. Numbers on precipitation histograms are the fraction of each P-group, P1 (left) to P5 (right), obtained as the 

sum of three individual bin values. Total rainy fraction is the sum of all P-groups’ fractions (i.e., sum of 15 individual 

bin values). 

 

 



 
Figure 6: Same as Fig. 5, but over land. 

 
  



 

 



 

 
 
Figure 7: Box-whisker plot of (a) the total rainy fraction, (b) the total cloud fraction, (c) the grid-mean log10(τ), and (d) 

the grid mean pc conditioned by precipitation groups, separately for ocean and land. The median values are shown as 

red horizontal lines, and the mean values are shown as black crosses. The vertical width of the boxes indicates the 

interquartile range (25th-75th percentile), and the whiskers extend from 5% to 95% values. Percentage numbers above 

the boxes indicate the occurrence ratio of each P-group relative to the total ocean or land grid cells.  



 
Figure 8: Cross-correlation coefficients in the extended tropical oceans for 13 years calculated between CFs of cloud 

types and precipitation group (individual or cumulative P-groups) values. The sum of all five precipitation groups 

shown in panel (k) corresponds to the total rainy fraction. 

 
  



 
Figure 9: Same as Fig. 8, but over land. 

 
 
 
  



 

 
Figure 10. Conditional cross-correlation coefficients between cloud joint histogram bin CF values calculated for 13 

years, based on (a) Cs CF over Ocean when P4>0, (b) Cb CF over Ocean when P4>0, (c) Cb CF over Ocean when P5>0, 

(d) Cs CF over Land when P4>0, (e) Cb CF over Land when P4>0, and (f) Cb CF over Land when P5>0. The 

percentage numbers above each panel are sample size ratios relative to the total number of ocean or land grid cells.  

 
 
 
  



 

 
 
Figure 11: Correlation coefficients between cloud type CF and precipitation histogram values, for (a) high clouds (Ci, 

Cs, and Cb), (b) Mid-level clouds (Ac, As, and Cu), and (c) low clouds (Cu, Sc, and St). Precipitation histogram values 

are added cumulatively from the 7th bin onward, so the sum from the 7th to the 9th bin corresponds to P3, and so on. 

Oceanic cloud results are shown in solid and continental cloud results are shown in dashed lines.   

 
 
 
  
 
  
 



  

Supplementary Figures 
 
 

 
 
Supplementary Figure 1: Map of relative frequency of occurrence (RFO) of the following conditions: (a) P5 values 

greater than 0; (b) P4 values greater than 0; and (c) P4 greater than zero, but with P5=0.  

  



 
 
Supplementary Figure 2: 2D joint histograms of P4+P5 fraction and Cb cloud fraction for (a) ocean and (b) land 

regions. As Figs. 8 and 9, the samples in the calculation are conditional to P4+P5 > 0. The histogram values are 

normalized to represent percentage of total number of samples. Gray color indicates values below 0.01%, and white 

color indicates 0% (no sample). The histogram bin size is 1/16 (=6.25%), and the bin labeled as “50%” indicates bin 

boundaries from 46.875% to 53.125%. 

 

 
 
Supplementary Figure 3: Same as Supplementary Fig. 2, but for Cu cloud. 
 



 
 
Supplementary Figure 4:  1°×1° resolution maps of correlation coefficients between (a) Cb or (b) Cu cloud fraction and 

P-group fraction P4+P5. As in Figs. 8 and 9, the samples for the calculation are conditional to P4+P5 > 0. The regions 

of abnormally high or low correlation values (e.g., Sc-dominant regions, the Sahara, the Himalayas, etc.) have usually 

small sample sizes. 
 
 
  



 

 
 
Supplementary Figure 5:  Same as Fig. 11, but with the x-axis starting at the 1st precipitation bin and cumulatively 

adding up to the heaviest 15th bin, which is equivalent to the sum from P1 to P5 or total rainy fraction. This figure 

therefore shows in more detail the evolution of the correlation coefficients in the panels of the bottom row of Figs 8 and 

9. 



 
 
Supplementary Figure 6:  Same as Fig. 11, but with the x-axis starting at the combined 1st-3rd histogram bins (P1), and 

then progressing as a running sum of three consecutive histogram bins up to the rightmost point corresponding to P5. 


